Part Number Hot Search : 
06T1004F 00020 13009 ACOF5S3E CA2818C 014SBDY 2SD1733 S5128
Product Description
Full Text Search
 

To Download MSTM-S3-T2F1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MSTM-S3-T2F1 Stratum 3 Timing Module
21 1 Comprehensive Drive 1 Aurora, Illinois 60505 Phone: 630- 851- 4722 Fax: 630- 851- 5040 www.conwin.com
Application
The Connor-Winfield MSTM-S3-T2F1 Simplified Control Timing Module acts as a complete system clock module for Stratum 3 timing applications in accordance with GR1244, Issue 2 and GR-253, Issue 3. Connor Winfield's Stratum 3 timing modules helps reduce the cost of your design by minimizing your development time and maximizing your control of the system clock with our simplified design.
Features
* 5V Miniature Timing Module * Redundant 19.44 MHz References * 40 sec., Filtered, Hold Over History * Operational Status Flags
Bulletin Page Revision Date Issued By
TM030 1 of 16 Advance A00 03 October 01 MBatts
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
General Description
The Connor-Winfield Stratum 3 Miniature Simplified Control Timing Module acts as a complete system clock module for general Stratum 3 timing applications. The MSTM is designed for external control functions. Full external control input allows for selections and monitoring of any of four possible operating states: 1) Holdover, 2) External Reference #1, 3) External Reference #2, and 4) Free Run. The Table 5 (pg. 4) illustrates the control signal inputs and corresponding operational states: In the absence of External Control Inputs (A,B), the MSTM enters the Free Run mode and signals an External Alarm. The MSTM will enter other operating modes upon application of a proper control signal. Mode 1 operation (A=1, B=0) results in an output signal that is phase locked to the External Reference Input #1. Mode 2 operation (A=0, B=1) results in an output signal that is phase locked to External Reference Input #2. Holdover mode operation (A=1, B=1) results in an output signal at or near the frequency as determined by the latest (last) locked-signal input values and the holdover performance of the MSTM. The primary feature of this model is the Reference Frequency Detector (RFD). This is an independent circuit that monitors both reference inputs simultaneously to determine that a signal is present and its frequency is within a valid range. A logical one on the outputs VALID_R1 and VALID_R2 indicates that the signals applied to EX_REF1 and EX_REF2 respectively have been detected and have a frequency that is within at least +/- 4.6 ppm of nominal. A range of +/-4.6 ppm is guaranteed for the life of the module. The actual range is somewhat more than twice that to account for normal drift and aging that will occur. When, for example, the reference applied to EX_REF1 disappears, VALID_R1 will go to a logical zero within 500 microseconds. When the signal returns at a frequency within +/ - 4.6 ppm of nominal the VALID_R1 output will return to a logical one after a 4-second delay. The delay is a validation period that requires the output of the frequency detector to remain stable for 4 seconds before confirming the status of the reference applied. This eliminates the incessant toggling of the frequency detector that occurs when the reference frequency is at the threshold frequency of the detector The function of the RFD is not related to the operational alarms, LOL and TVL, which monitor the operation of the PLL relative to the selected active reference. In fact the operational alarms function only at the extreme edge of the PLL operating range. This means that it is quite possible for the active reference to drift out of range of the Reference Frequency Detector and still remain well within the capture range of the PLL and not activate the operational alarms. If the other reference was still marked valid by the RFD it might make sense to switch to the better reference before the selected reference drifts completely out of range. Alarm signals are generated at the Alarm Output during Holdover and Free Run operation. Alarm Signals are also generated by loss-of-lock, loss of Reference, and by a Tune-Limit indication from the PLL. A Tune-Limit alarm signal indicates that the OCXO tuning voltage is approaching within 10% the limits of its lock capability and that the External Reference Input may be erroneous. A high level indicates an alarm condition. Real-time indication of the operational mode is available from outputs S0 and S1, which are determined from internal mode registers. Control loop filters effectively attenuate any reference jitter and smooth out phase transients.
Functional Block Diagram
Figure 1
Control Select Alarm Select CNTL A CNTL B 0 1 S0 S1 Lock and Detection A0 PLL TVL A1
EX REF 1 EX REF 2 Internal Free Run DAC Filter Tuning Voltage Monitor Source Selector DAC Stratum 3 OCXO SYNC_OUT 3:1 MUX Phase Comparator /N
Filter/ FIFO TCXO CLK_OUT
Holdover Circuit /N
EX REF 2
R2-CHK
VALID_R2
EX REF 1
R1-CHK
VALID_R1
Advance Data Sheet #: TM030
Page 2 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
Absolute Maximum Rating
Table 1
Symbol VCC VI Ts Parameter Power Supply Voltage Input Voltage Storage Temperature Minimum -0.5 -0.5 -55 Nominal Maximum 7.0 VCC + 0.5 100 Units Volts Volts deg. C Notes 1.0 1.0 1.0
Recommended Operating Conditions
Table 2
Symbol Vcc VIH VIL tIN CIN VOH VOL tTRANS tPULSE TOP Parameter Power supply voltage High level input voltage - TTL Low level input voltage - TTL Input signal transition - TTL Input capacitance High level output voltage, IOH = -4.0mA, VCC = min. Low level output voltage, IOL = 12.0 mA, VCC = min. Clock out transition time 8kHz input reference pulse width( positive or negative) Operating temperature 30 0 70 4.0 2.4 Minimum 4.75 2.0 0 Nominal 5.00 Maximum 5.25 VCC 0.8 250 15 5.25 0.4 Units Volts Volts Volts ns pF Volts Volts ns ns C 2.0 Notes
Specifications
Table 3
Parameter Synchronized Output Frequency (SYNC_OUT) Non-synchronized Output Frequency (CLK_OUT) Input Reference Frequency Supply Current Jitter, Wander and Phase Transient Tolerances Wander Generation Wander Transfer Jitter Generation Jitter Transfer Phase Transients Free Run Accuracy Hold Over Stability Inital Offset Temperature Drift Maximum Hold Over History Pull-in/ Hold-in Range Lock Time PLL_TVL Alarm Limit Specifications 19.44 MHz 19.44 MHz Dual 19.44 MHz references 250 mA typical, 400 mA during warm-up (Maximum) GR-1244-CORE 4.2-4.4, GR-253-CORE 5.4.4.3.6 GR-1244-CORE 5.3, GR-253-CORE 5.4.4.3.2 GR-1244-CORE 5.4 GR-1244-CORE 5.5, GR-253-CORE 5.6.2.3 GR-1244-CORE 5.5, GR-253-CORE 5.6.2.1 GR-1244-CORE 5.6, GR-253-CORE 5.4.4.3.3 4.6 ppm over TOP 0.37 ppm for initial 24 hrs 0.05 ppm 0.28 ppm 0.04 ppm 40 seconds 4.6 ppm minimum <100 sec. Extreme 10% ranges of Pull-in/Hold-in Range 5.0 4.0 3.0 Notes
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 3 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
Pin Description
Table 4
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Connection S0 S1 VALID_R1 VALID_R2 GND A0 CNTL A CNTL B A1 GND SYNC_OUT GND CLK_OUT GND EX_REF_2 GND EX_REF_1 VCC Description Condition state output bit 0 Condition state output bit 1 Reference #1 validation Reference #2 validation Ground Alarm bit 0 Mode control input Mode control input Alarm bit 1 Ground Primary timing output signal. Signal is sychronized to reference. Ground Stratum 3 TCXO output (non-sychronized 19.44 MHz, 4.6 output) Ground External 19.44 MHz Input Reference #2 Ground External 19.44 MHz Input Reference #1 +5V DC supply
Function Control Table
Table 5
Control Inputs A 0 1 B 0 0 Free Run (Default Mode) External Reference #1 External Reference #2 Normal Tune Limit LOR LOL (>17 ppm) Normal Tune Limit LOR LOL (>17 ppm) Operational Mode Alarm Outputs A0 0 0 1 0 1 0 1 0 1 0 A1 0 0 0 1 1 0 0 1 1 0 Condition State Output S0 0 1 1 1 1 0 0 0 0 1 S1 0 0 0 0 0 1 1 1 1 1
0
1
1
1
Hold Over
NOTES: 1.0: Stresses beyond those listed under Absolute Maximum Rating may cause damage to the device. Operation beyond Recommended Conditions is not implied. 2.0: Logic is 3.3V CMOS 3.0: GR-1244-CORE 3.2.1
4.0: 5.0:
Hold Over stability is the cumulative fractional frequency offset as described by GR-1244-CORE, 5.2 Pull-in Range is the maximum frequency deviation from nominal clock rate on the reference inputs to the timing module that can be overcome to pull into synchronization with the reference
Advance Data Sheet #: TM030
Page 4 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
Qualification Outputs
Table 6
Condition Ref 1 is within 4.6 ppm Ref 1 > 4.6 ppm Ref 1 (No Signal) Ref 2 is within 4.6 ppm Ref 2 > 4.6 ppm Ref 2 (No Signal) Valid_R1 1 0 0 X X X Valid_R2 X X X 1 0 0
Valid Reference Thresholds
Table 7
Minimum VALID_R1 VALID_R2 4.6 ppm 4.6 ppm Nominal 9.2 ppm 9.2 ppm Maximum 13.8 ppm 13.8 ppm
Frequency Detector Range Over Lifetime
Table 8
Detector Frequency Offset 0 ppm +4.6 ppm -4.6 ppm VALID_R1/R2 Range 9.2 ppm +13.8 ppm -4.6 ppm +4.6 ppm -13.8 ppm
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 5 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
Typical Application
Figure 2
BITS System Signal
Input Select
Timing Card #1
A Y S
Line Card #1
B C
CW's SCG 2500/4500 CW's STM/MSTM module
Clock out
MUX
RCV
Timing Card #2
A B C
Line Card #N
MUX S
Y
CW's SCG 2500/4500 CW's STM/MSTM module
Clock out
RCV
System Select
Typical System Test Set-up
Figure 3
G P S or LO R AN T i m in g S o u r c e
T h is d e v ic e s u p p lie s s y s t e m t im e in fo rm a tio n . I t c a n b e t h o u g h t o f a s s u p p ly in g " a b s o lu t e tim e " r e f e r e n c e in fo rm a tio n
S a m p l e M T IE D a t a f o r S T M - S 3 / M S T M - S 3
1 .0 E - 6
10 MHz
M T IE (s
P o s s i b le C h o ic e s I n c lu d e S ta n fo rd R e s e a r c h M o d e l: F S 7 0 0 T r u e tim e M o d e l X X X
T yp i c al r e s p o n s e - 3 0 0 0 s e c o n d te s t - J it t e r a p p lie d ( 2 U I @ re f d a t e A P R k dh 22 1998
1 0 H z)
1 0 0 .0 E - 9
1 0 .0 E - 9
M T IE 1 2 4 4 - 5 .2 M a s k ( A ) 1 2 4 4 - 5 .2 M a s k ( B ) 1 2 4 4 - 5 .6 M a s k G R 2 5 3 - 5 .4 . 4 .3 . 2
1 .0 E - 9 1 0 0 .0 E - 3 1 .0 E +0 1 0.0E +0 1 0 0 .0 E + 0 C o p y ri g ht 1.0 E +3 1 0 .0 E + 3
O b s e r v a t i o n T im e ( s )
1 9 9 8 C o n n o r - W in f ie ld a l l r ig h ts r e s e r v e d
T a r g e t S y s te m U n d e r T e s t
E x te r n a l R e fe re n ce In p u t
A r b i tr a r y W a v e fo rm G e n e ra to r
D S 1 ra te R Z ( 1 . 5 4 4 M H z ) , E 1 ra te R Z o r 8 k H z c lo c k R Z w it h n o is e m o d u la t io n
C l o c k o r B IT S l o g i c l e v e l c lo c k in p u t (T T L , C M O S , e tc .)
S ta n d a r d s C o m p lia n c e D o c u m e n ts M T IE , T D E V , W a n d e r T r a n s fe r , a n d W a n d e r G e n e r a t io n P l o t s OC-12 Line Card OC-48 Line Card OC-3 Line Card DS-1 Line Card Timing Card Timing Card Line Card
S a m p le
1 .0 E - 6
Noise Modulation Input
W a n d e r G e n e r a tio n
10 H z )
(T D E V ) f o r S T M / M S T M - S 3
T yp i c a l r e s p o n s e - 3 0 0 0 s e c o n d te s t - J it t e r a p pl ie d ( 2 U I @ r e f da t e A P R 2 2 1 9 9 8 k dh
10 MHz
1 0 0 .0 E - 9
. . . . . ..
1 0 .0 E - 9
T D E V ( se c
TDEV
1 .0 E - 9
G R 1 2 4 4 - F ig 5 . 1 G R 1 2 4 4 - F ig 5 - 3
E x te r n a l R e fe re n ce In p u t
A r b i tr a r y W a v e fo rm G e n e ra to r [N o i s e S o u rc e ]
1 0 0 .0 E - 1 2 1 0 .0 E - 3
1 0 0 .0 E - 3
1 .0 E + 0
1 0 .0 E +0
1 0 0 .0 E + 0
1 .0 E + 3
In te g r a t io n
T im e
(s e c )
C o p y r i gh t 1 9 9 8 C o n n o r -W in f ie ld a ll l r ig h ts r e s e r v e d
10 MHz D S 1 r a t e [ 1 . 5 4 4 M H z ] B IT S B ip o la r D S - 1 , O C - 3 , O C - 1 2 e le c tr ic a l o r o p t ic a l s ig n a ls 10 MHz T e k t ro n ix S J300E
E x te r n a l R e fe re n c e In p u t
T im e - s t a m p e d e n s e m b le b a s e d o n a b s o lu t e tim e re fe re n c e ( 1 0 M H z in p u t ) P h a s e E r ro r d a t a o u tp u t
HP 53310A M o d u la t io n A n a ly z e r / T im e I n t e r v a l A n a ly z e r
W a n d e r A n a ly z e r d a ta ( I E E E - 4 8 8 )
E x te r n a l R e fe re n ce In p u t
T E K T R O N IX S J 3 0 0 E
I E E E - 4 8 8 C o n tr o lle r P la t fo r m f o r s o f tw a r e H P 5 3 3 0 5 A P h a s e A n a ly z e r H P E 1748A Sync M e a s u re m e n t T e k t ro n ix W a n d e r A n a ly z e r
Advance Data Sheet #: TM030
Page 6 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
MSTM-S3-T2F1 Typical Current Draw
Figure 4
0.45 0.4 0.35
CURRENT (A)
0.3 0.25 0.2 0.15 0.1 0.05 0 0 10 20 30 40 50 60
TIME (Sec)
Typical Calibrated Wander Transfer TDEV
Figure 5
10000
1000
TDEV (ns)
100
TDEV (ns)
10
GR1244, Fig 5.3
1 0.1 0.01 1 10 100 1000 10000
Integration Time (Sec.)
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 7 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
Typical Wander Generation MTIE
Figure 6
1000
G R 1 2 4 4 , F ig 5 .2 (A ) G R 1 2 4 4 , F ig 5 .2 (B ) G R 2 5 3 -5 .4 .4 .3 .2 , F ig 5 .1 7 M T IE (n s )
MTIE (ns)
100
10 0.1 1 10 100 1000 10000 100000 1000000
O b s e r v a tio n T im e (s e c .)
Typical Wander Generation TDEV
Figure 7
100
T D E V (n s) G R 1 24 4, F ig 5 .1
10
TDEV (ns)
1 0 .1 10000 1000 0.1 100 10 1
In te g ra tio n T im e (s e c .)
Advance Data Sheet #: TM030
Page 8 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
1s Phase Transient TIE
Figure 8
1200
1000
800
TIE (ns)
600
400
200
0
-200 0 1 2 3 4 5 Time (sec) 6 7 8 9 10
1s Phase Transient MTIE
Figure 9
10000
1000
MTIE (ns)
G R -2 5 3 , F i g . 5 -1 9
100
M T I E (n s)
10
1 0 .0 1
0 .1
1
10
100
1000
O b s e rv a tio n T im e (s e c )
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 9 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
Entry Into Hold Over
Figure 10
10000
1000
MTIE (ns)
100
10
G R -1 2 4 4 O b je c t ive , F ig . 5 -8 G R -1 2 4 4 R e q u ire m e n t , F ig . 5 -8 Ty p ic a l M TIE
1 0.001
0.01
0.1
1
10
100
O b se r v a ti o n T i m e (se c o n d s)
Return from Hold Over
Figure 11
10000
1000
MTIE (ns)
100
10 G R -1 2 4 4 R e q u ire m e n t , F ig . 5 -7 M TIE (n s ) Ty p ic a l M TIE
1 0.001
0.01
0 .1 O b se rv a ti o n T i m e (se c . )
1
10
100
Advance Data Sheet #: TM030
Page 10 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
MSTM-S3-T2F1 Mode Indicator Delay
Figure 12
Change in Operational Mode
Operational Mode Indicator tm
2 msec Loss of Reference Timing Diagram
Figure 13
External Reference Input
Alarm tAon tAoff
2 msec < tAon < 6.125 msec 0 msec < tAoff < 2.125 msec
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 11 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
Tuning Voltage Limit Alarm Timing Diagram
Figure 14
TVL LimitHigh Frequency Sync_Out
(NominalFrequency)
TVL LimitLow Frequency TVL Alarm & AlarmOut t 0< t<2.125msec *The DAC is updated only when the output changes level. The maximum update rate is 8kHz
Valid Reference Qualification Timing Diagram
Figure 15
Reference Frequency Valid Upper Limit EX_REF 1 or EX_REF 2 Reference Frequency Valid Lower Limit Valid_R1 or Valid_R2
(Nominal Frequency)
No Reference Available
4 sec Delay
375 usec - 500 usec Delay on LOR
Advance Data Sheet #: TM030
Page 12 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
Solder Clearance
Figure 16
.020" MAX.
.020"
.030" PIN LAND
ALL SOLDER AND/OR WIRE TAGS SHALL NOT EXTEND MORE THAN .020" BELOW PC BOARD BOTTOM SURFACE
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 13 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
MECHANICAL OUTLINE:
The mechanical outline of the MSTM-S3-T2F1 is shown in Figure 17. The board space required is 2" x 2". The pins are .040" in diameter and are .150" in length. The unit is spaced off the PCB by .030" shoulders on the pins. Due to the height of the device it is recommended to have heat sensitive devices away where the air flow might not be blocked.
GROUND AND POWER SUPPLY LINES:
Power specifications will vary depending primarily on the temperature range. At wider temperature ranges starting at 0 to 70 deg. C., an ovenized oscillator, OCXO, will be incorporated. The turn-on current for an OCXO requires a peak current of about .4A for about a minute. The steady state current will the vary from 50-150 mA depending on the temperature. It is suggested to plan for the peak current in the power and ground traces pin 18 and pin 5. The other four ground pins 10, 12, 14, and 16 are intended for signal grounds.
PAD ARRAY AND PAD SPACING:
The pins are arranged in a dual-in-line configuration as shown in Figure 16. There is .2" space between the pins in-line and each line is separated by 1.6". See Figures 17 & 18 and Table 6.
POWER SUPPLY REGULATION:
Good power supply regulation is recommended for the MSTM-S3-T2F1 The internal oscillators are regulated to operate from 4.75 - 5.25 volts. Large jumps within this range may still produce varying degrees of wander. If the host system is subject to large voltage jumps due to hot-swapping and the like, it is suggested that there be some form of external regulation such as a DC/DC converter.
PAD CONSTRUCTION:
The recommended pad construction is shown in Figure 18. For the pin diameter of .040" a hole diameter of .055" is suggested for ease of insertion and rework. A pad diameter of .150" is also suggested for support. This leaves a spacing of .050" between the pads which is sufficient for most signal lines to pass through.
SOLDERING RECOMMENDATIONS:
Due to the sensitive nature of this part, hand soldering or wave soldering of the pins is recommended after reflow processes.
SOLDER MASK:
A solder mask is recommended to cover most the top pad to avoid excessive solder underneath the shoulder of the pin to avoid rework damage. See Table 6 and Figure 19.
WASHING RECOMMENDATIONS:
The MSTM-S3-T2F1 is not in a hermetic enclosure. It is recommended that the leads be hand cleaned after soldering. Do not completely immerse the module.
VIA KEEP OUT AREA:
It is recommended that there be no vias or feed throughs underneath the main body of the module between the pins. It is suggested that the traces in this area be kept to a minimum and protected by a layer of solder mask. See Figure 18.
MODULE BAKEOUT:
Do not bakeout the MSTM-S3-T2F1
Advance Data Sheet #: TM030
Page 14 of 16
Rev: A00
Date: 10 / 03 / 01
(c) Copyright 2001 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice
Package Dimensions
Figure 17
Characteristic Measurements
Table 9
Characteristic Item
Pad to Pad Spacing Solder pad top O.D. Solder pad top I.D. Solder pad bottom O.D. Solder pad bottom I.D. Solder mask top dia. Solder mask bottom dia. Pin row to row spacing
Measurement (inches)
0.200 0.150 0.055 0.150 0.055 0.070 0.155 1.600
Recommended Footprint Dimensions
Figure 18
Side Assembly View
Figure 19
TOP SIDE SOLDER RESIST (OVER PAD) PCB SIDE VIEW BOTTOM SIDE SOLDER RESIST (UP TO PAD)
Advance Data Sheet #: TM030
(c) Copyright 2001 The Connor-Winfield Corp.
Page 15 of 16
Rev: A00
Date: 10 / 03 / 01
All Rights Reserved Specifications subject to change without notice
21 1 Comprehensive Drive 1 Aurora, Illinois 60505 Phone: 630- 851- 4722 Fax: 630- 851- 5040 www.conwin.com
Revision
A00
Revision Date
10/03/01
Note
Advance Info Data Sheet


▲Up To Search▲   

 
Price & Availability of MSTM-S3-T2F1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X